52 research outputs found

    SalsaNet: Fast Road and Vehicle Segmentation in LiDAR Point Clouds for Autonomous Driving

    Full text link
    In this paper, we introduce a deep encoder-decoder network, named SalsaNet, for efficient semantic segmentation of 3D LiDAR point clouds. SalsaNet segments the road, i.e. drivable free-space, and vehicles in the scene by employing the Bird-Eye-View (BEV) image projection of the point cloud. To overcome the lack of annotated point cloud data, in particular for the road segments, we introduce an auto-labeling process which transfers automatically generated labels from the camera to LiDAR. We also explore the role of imagelike projection of LiDAR data in semantic segmentation by comparing BEV with spherical-front-view projection and show that SalsaNet is projection-agnostic. We perform quantitative and qualitative evaluations on the KITTI dataset, which demonstrate that the proposed SalsaNet outperforms other state-of-the-art semantic segmentation networks in terms of accuracy and computation time. Our code and data are publicly available at https://gitlab.com/aksoyeren/salsanet.git

    Depth- and Semantics-aware Multi-modal Domain Translation: Generating 3D Panoramic Color Images from LiDAR Point Clouds

    Full text link
    This work presents a new depth- and semantics-aware conditional generative model, named TITAN-Next, for cross-domain image-to-image translation in a multi-modal setup between LiDAR and camera sensors. The proposed model leverages scene semantics as a mid-level representation and is able to translate raw LiDAR point clouds to RGB-D camera images by solely relying on semantic scene segments. We claim that this is the first framework of its kind and it has practical applications in autonomous vehicles such as providing a fail-safe mechanism and augmenting available data in the target image domain. The proposed model is evaluated on the large-scale and challenging Semantic-KITTI dataset, and experimental findings show that it considerably outperforms the original TITAN-Net and other strong baselines by 23.7%\% margin in terms of IoU

    Learning the Semantics of Manipulation Action

    Full text link
    In this paper we present a formal computational framework for modeling manipulation actions. The introduced formalism leads to semantics of manipulation action and has applications to both observing and understanding human manipulation actions as well as executing them with a robotic mechanism (e.g. a humanoid robot). It is based on a Combinatory Categorial Grammar. The goal of the introduced framework is to: (1) represent manipulation actions with both syntax and semantic parts, where the semantic part employs λ\lambda-calculus; (2) enable a probabilistic semantic parsing schema to learn the λ\lambda-calculus representation of manipulation action from an annotated action corpus of videos; (3) use (1) and (2) to develop a system that visually observes manipulation actions and understands their meaning while it can reason beyond observations using propositional logic and axiom schemata. The experiments conducted on a public available large manipulation action dataset validate the theoretical framework and our implementation

    Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection

    Full text link
    Although LiDAR sensors are crucial for autonomous systems due to providing precise depth information, they struggle with capturing fine object details, especially at a distance, due to sparse and non-uniform data. Recent advances introduced pseudo-LiDAR, i.e., synthetic dense point clouds, using additional modalities such as cameras to enhance 3D object detection. We present a novel LiDAR-only framework that augments raw scans with denser pseudo point clouds by solely relying on LiDAR sensors and scene semantics, omitting the need for cameras. Our framework first utilizes a segmentation model to extract scene semantics from raw point clouds, and then employs a multi-modal domain translator to generate synthetic image segments and depth cues without real cameras. This yields a dense pseudo point cloud enriched with semantic information. We also introduce a new semantically guided projection method, which enhances detection performance by retaining only relevant pseudo points. We applied our framework to different advanced 3D object detection methods and reported up to 2.9% performance upgrade. We also obtained comparable results on the KITTI 3D object detection dataset, in contrast to other state-of-the-art LiDAR-only detectors

    FIVA: Facial Image and Video Anonymization and Anonymization Defense

    Full text link
    In this paper, we present a new approach for facial anonymization in images and videos, abbreviated as FIVA. Our proposed method is able to maintain the same face anonymization consistently over frames with our suggested identity-tracking and guarantees a strong difference from the original face. FIVA allows for 0 true positives for a false acceptance rate of 0.001. Our work considers the important security issue of reconstruction attacks and investigates adversarial noise, uniform noise, and parameter noise to disrupt reconstruction attacks. In this regard, we apply different defense and protection methods against these privacy threats to demonstrate the scalability of FIVA. On top of this, we also show that reconstruction attack models can be used for detection of deep fakes. Last but not least, we provide experimental results showing how FIVA can even enable face swapping, which is purely trained on a single target image.Comment: Accepted to ICCVW 2023 - DFAD 202
    corecore